文章编号: 0258-7025(2010)07-1762-10

自由空间可重构光互连网络的光学矩阵运算

杨俊波¹ 李修建¹ 杨建坤¹ 刘 菊¹ 苏尼渝² 徐 平³

1国防科学技术大学理学院技术物理研究所,湖南长沙410073

(²四川大学电子信息学院光电科学技术系,四川 成都 610064;³深圳大学电子科学与技术学院,广东 深圳 518060/

摘要 根据榕树网络的链路函数和连接规则,得到光信号变换矩阵,将光互连网络对信号的传输与处理,等效为对 输入信号阵列的矩阵运算,建立输入/输出信号间的关系;同时,将二维榕树网络矩阵运算拓展和延伸到三维空间, 对自由空间三维榕树网络的交换和信号处理进行矩阵运算等效,并最终实现光信号的路由判断和节点开关控制; 从理论上解决了利用光互连网络的拓扑结构性质和节点开关状态的调整,实现可控的矩阵运算操作问题;为多端 口大容量高速光互连网络的信号传输与交换、运算与处理、路由与控制等提供了一种有效的方法。

关键词 光通信;光互连网络;矩阵运算;榕树网;全交叉网络

中图分类号 TN256;TN253 文献标识码 A doi: 10.3788/CJL20103707.1762

Optical Matrix Computing of Rearrangeable Optical Interconnection Network in Free Space

Yang Junbo¹ Li Xiujian¹ Yang Jiankun¹ Liu Ju¹ Su Xianyu² Xu Ping³

¹ Tech-Physical Research Center, National University of Defense Technology, Changsha, Hunan 410073, China

 $^{\rm 2}\,{\it Department}$ of Optoelectronics , Sichuan University , Chengdu , Sichuan 610064 , China

³ College of Electronic Science and Technology, Shenzhen University, Shenzhen, Guangdong 518060, China

Abstract Based on the link rule and the function principle of the banyan network, its corresponding processing matrix has been achieved to denote and illustrate the relative signal operating and controlling. In other words, the matrix computing is employed to replace the complicated control process of optical network. Furthermore, extend the results of the two-dimensional banyan network to three-dimensional space in terms of the relative mapping rule of banyan network, the performing matrix has also been attained to solve some problems such as node controlling, signal routing, etc. The simple truth is that the ability to replace the complex process of optical interconnection network using the matrix computing opens the door to a host of new and exciting opportunities including signal routing and node switch controlling. The results indicate that this method may be useful for optical switching applications, optical computing, and optical information processing.

Key words optical communications; optical interconnection network; matrix computing; banyan network; crossover network

1 引 言

光互连网络以其极高的时空带宽积、抗电磁干 扰、互连密度大、功耗低以及集成度高等优点在光信 号传输、光交换和光计算中被广泛研究与应用^[1~4]。 光互连网络一般由节点开关、链路连接模块、输入输 出接口以及控制单元构成,其连接方式可以采用光 纤、波导和自由空间等。自由空间互连因无需传输 介质,信号光在垂直与二维平面的第三维空间并行 传输,具有时空带宽高、组网灵活性强、空间结构简 单和集成度高等特点,在短距离大容量高速光信号 处理中具有明显的特点和优势^[5,6]。光互连网络根 据其拓扑结构、功能特点、连接规则、控制原理等的 不同分为全混洗^[7]、全交叉^[8]、榕树(banyan)^[9~12] 和 Clos 网络^[13]等,在光通信和光信息处理中具有

收稿日期: 2009-08-31; 收到修改稿日期: 2009-12-12

基金项目:国家自然科学基金(60907003)和国防科技大学校预研基金(JC09-02-12)资助课题。

作者简介:杨俊波(1974—),男,博士,讲师,主要从事信息光学和光通信方面的研究。E-mail: yangjunbo008@sohu.com

不同的应用。

光互连网络对信号的传输与处理,可以等效为 对输入信号阵列的一种矩阵运算,用光互连网络变 换矩阵代替实际的信号处理过程,建立输入输出信 号间的关系,同时确定各级节点开关的状态(直通或 交叉)。因此,对于光互连网络的矩阵运算研究具有 非常重要的意义。相关的研究工作已经展开,并取 得了一定的成绩。文献[14]对混洗互连的矩阵处理 进行了研究,对单级的左混洗和右混洗的矩阵表达 进行了描述,并将其用于构建和指导大规模混洗互 连网络的设计;文献[15]导出了 banyan 网络的互连 矩阵,并进行了相关的模拟计算,在理论上为 banyan 网络互连函数的研究提供了一种有效的分 析方法;同时,对于大端口光开关矩阵的交换也可以 采用矩阵运算进行研究和分析,得到其交换控制和 运算结果[16~19]。这些工作主要是对二维光互连网 络和光开关矩阵进行讨论,关于三维光互连网络的 研究, 文献 [20] 提出了一种新型的三维光学 Comega 网络,对其拓扑结构和网络规则进行了设 计,并对三维 Comega 网络的光学实现进行了实验 研究,取得了很好的效果。

本文工作是在传统的二维光互连网络矩阵描述 的基础上,将二维光互连网络矩阵运算拓展和延伸 到三维空间,对自由空间三维光互连网络的交换和 信号处理进行矩阵运算等效,将光互连网络的相关 功能简化为相应的矩阵操作,并最终实现光信号的 路由判断和节点开关控制。

2 Banyan 互连网络

与全混洗、全交叉等网络相比, banyan 网络的链路函数更简单、操作控制更方便、实现成本更低、能量损失也更小。因而,主要对 banyan 网络进行研究,同样的方法和操作也适用于其他光互连网络。

由于 banyan 网是一种阻塞型网络,单个的 banyan 网络不能完成输入与输出通道间所有排列 方式的互连,在网络中存在路径冲突与阻塞,使有些 输出排序得不到实现。通过 banyan 网络与逆 banyan 网络的串联构成的双 banyan 互连网络能有 效地解决路径的冲突与阻塞^[21,22],实现输入信号光 全排列无阻塞的交换与排序。图 1 和图 2 分别为 N=4和 N=8全排列无阻塞型双 banyan 网的拓 扑结构图。

光互连网络通过节点开关和链路传输实现信号 光的路由和控制,可以看作是对输入信号阵列的矩

图 1 N=4 可重排无阻塞双 banyan 网

Fig. 1 Rearrangeable nonblocking double

图 2 全排列无阻塞双 banyan 网络拓扑图 Fig. 2 Schematic diagram of full-permutation non-blocking double banyan network

阵运算操作,整个处理过程可以用一个变换矩阵 T 表示,T = [光互连网络变换矩阵],即[输出信号矩 阵] = T [输入信号矩阵]。很明显,光互连网络变 换矩阵 T 简化了复杂的信号路由和网络控制,用简 单的数学运算代替了中间繁琐的信号处理过程;而 且,它说明光互连网络本身就是一个高效的矩阵运 算器,通过改变其内部节点开关的状态得到不同的 变换矩阵 T,对输入信号阵列进行不同的矩阵运算, 对应的输出矩阵即是对光信号控制和交换操作的结 果;此外,由光互连网络变换矩阵 T,能够确定各级 节点开关的状态,这为光信号的路由操作和算法控 制提供了很好的选择和方法。

3 二维 banyan 网络矩阵运算

为简单起见,先考虑图 1 所示的 N= 4 的可重 排无阻塞双 banyan 网络,同样的方法也适用于N= 8,16 等大端口的 banyan 网络。该互连网络由三级 节点级和两级链路级所构成,很明显两链路级对应 的连接关系相同。由 banyan 网的拓扑结构关系得

	L	0	0	0	
到体败函粉对应的炬防头		0	空 \2		
判证的函数利应的起件力	0	1	0	0	, 定义 1 点
	0	0	0	1	

开关级对应的矩阵为

$\begin{bmatrix} a_i & \overline{a}_i & 0 & 0 \\ \hline & & & & a \end{bmatrix} \qquad \qquad$	光信号在光互连网络中的处理过程,对每
$\begin{bmatrix} a_i & a_i & 0 & 0 \\ 0 & 0 & 1 & \overline{1} \end{bmatrix} \qquad $	平元的处理用相应的矩阵操作表示。
$\begin{bmatrix} 0 & 0 & b_i & b_i \\ 0 & 0 & \overline{b} & b_i \end{bmatrix} \qquad $	χ π $\bar{\chi}$ $\bar{\chi}$
$\begin{bmatrix} 0 & 0 & 0_i & 0_i \end{bmatrix}_{i=2lb N-1}$ 每一级中西个劳卢亚关诉构成 其中 $a_i h_i \to 0$ 武	$\begin{bmatrix} a_1 & a_1 & 0 & 0 \\ \hline a_2 & a_2 & 0 & 0 \end{bmatrix}$
每一级田网千节点开天所构成。兵中 $a_i, o_i \to 0$ 现 1.1 表示该节占开关直通 0 则表示交叉变换 N	$\begin{bmatrix} a_{1} & a_{1} & 0 & 0 \\ 0 & 0 & b_{1} & b_{1} \end{bmatrix}, $ (1)
是输入输出端口数, <i>i</i> 对应各节占级。	$\begin{bmatrix} 0 & 0 & b_1 & b_1 \\ 0 & 0 & \overline{b}_1 & b_1 \end{bmatrix}$
3.1 矩阵操作	
弟一链路级变换 $\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 & a_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_2 & a_3 & 0 & 0 \end{bmatrix}$	\overline{a} , 0, 0, 1
$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a_1 & a_1 & 0 & 0 \\ a_1 & a_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ 0 \end{bmatrix}$	$\begin{array}{cccc} a_1 & 0 & 0\\ 0 & b_1 & \overline{b}_1 \end{array}$
$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & b_1 & \overline{b}_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \overline{a}_1 \end{bmatrix}$	$\begin{vmatrix} a_1 & 0 & 0 \end{vmatrix}$, (2)
$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & \overline{b_1} & b_1 \end{bmatrix} \begin{bmatrix} 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & \overline{b}_1 & b_1 \end{bmatrix}$
第二节点级操作	
$\begin{bmatrix} a_2 & \overline{a}_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 & \overline{a}_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_2 a_1 \end{bmatrix}$	$a_2 \overline{a}_1 \qquad \overline{a}_2 b_1 \qquad \overline{a}_2 \overline{b}_1$
$\begin{vmatrix} \overline{a}_2 & a_2 & 0 & 0 \end{vmatrix} \begin{vmatrix} 0 & 0 & b_1 & \overline{b}_1 \end{vmatrix} = \begin{vmatrix} \overline{a}_2 a_1 \\ \overline{a}_2 & a_2 \end{vmatrix}$	$\overline{a}_{2} \overline{a}_{1} a_{2} b_{1} a_{2} \overline{b}_{1} \qquad (3)$
$\begin{bmatrix} 0 & 0 & b_2 & \overline{b}_2 \end{bmatrix} \begin{bmatrix} \overline{a}_1 & a_1 & 0 & 0 \end{bmatrix} \begin{bmatrix} b_2 \overline{a}_1 \end{bmatrix}$	$b_2 a_1 \qquad \overline{b}_2 \overline{b}_1 \qquad \overline{b}_2 b_1$
$\begin{bmatrix} 0 & 0 & b_2 & b_2 \end{bmatrix} \begin{bmatrix} 0 & 0 & b_1 & b_1 \end{bmatrix} \begin{bmatrix} b_2 \overline{a} \end{bmatrix}$	$\begin{smallmatrix} 1 & b \begin{smallmatrix} 2 a_1 & b_2 & b \end{smallmatrix} \begin{bmatrix} b \begin{smallmatrix} 2 & b_1 & b_2 & b_1 \end{bmatrix}$
第二链路级变换	
$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} a_2 a_1 & a_2 a_1 & a_2 b_1 & a_2 b_1 \\ - & - & - & - & - & - & - & - \\ a_2 a_1 & a_2 a_1 & a_2 a_1 & a_2 a_1 \\ - & - & - & - & - & - & - \\ a_1 a_2 a_1 & a_2 a_1 & a_2 a_1 \\ - & - & - & - & - & - & - \\ a_2 a_1 a_2 a_1 & a_2 a_1 & a_2 a_1 \\ - & - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 & a_2 a_1 \\ - & - & - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 & a_2 a_1 \\ - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - & - & - & - \\ a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 a_2 a_1 \\ - & - & - & - & - & - & - & - & - & -$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_2 a_1 & a_2 a_1 & a_2 b_1 & a_2 b_1 \\ b_1 \overline{a_1} & b_1 a_2 & \overline{b_1} & \overline{b_1} & \overline{b_1} & \overline{b_1} \end{bmatrix} = \begin{bmatrix} b_2 \\ a_1 a_2 a_1 & a_2 a_1 & a_2 a_1 & a_2 a_1 \end{bmatrix}$	$\begin{bmatrix} a_{1} & b_{2}a_{1} & b_{2}b_{1} & b_{2}b_{1} \\ a_{2} & \overline{a}_{2} & \overline{a}_{2} & a_{2}b_{2} & a_{2}\overline{b}_{1} \end{bmatrix}, (4)$
$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_2 & a_1 & b_2 & a_1 & b_2 & b_1 \\ \hline b_2 & \overline{a_1} & \overline{b_2} & \overline{a_1} & b_2 & \overline{b_1} \\ \hline b_2 & \overline{a_1} & \overline{b_2} & \overline{a_1} & \overline{b_2} & \overline{b_1} \end{bmatrix} \begin{bmatrix} a_1 & a_2 & b_1 \\ \hline b_2 & \overline{a_1} & \overline{b_2} & \overline{b_1} \\ \hline b_2 & \overline{a_1} & \overline{b_2} & \overline{b_1} \end{bmatrix}$	$\overline{a_1}$ $\overline{b_2}a_1$ $\overline{a_2}b_1$ $\overline{a_2}b_1$ $\overline{b_2}a_1$ $\overline{b_2}a_2$ $\overline{b_1}$
第三节点级操作	$a_1 b_2 a_1 b_2 b_1 b_2 b_2 b_1 b_2 b_2 b_1 b_2 $
$\begin{bmatrix} a_3 & \overline{a}_3 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_2a_1 & a_2\overline{a}_1 & \overline{a}_2b_1 & \overline{a}_2\overline{b}_1 \end{bmatrix}$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$0 0 b_3 \overline{b}_3 \qquad \overline{a}_2 a_1 \overline{a}_2 \overline{a}_1 a_2 b_1 a_2 \overline{b}_1 $	=
$\begin{bmatrix} 0 & 0 & \overline{b}_3 & b_3 \end{bmatrix} \begin{bmatrix} \overline{b}_2 \overline{a}_1 & \overline{b}_2 a_1 & b_2 \overline{b}_1 & b_2 b_1 \end{bmatrix}$	
$\begin{bmatrix} a_3 a_2 a_1 + \overline{a}_3 b_2 \overline{a}_1 & a_3 a_2 \overline{a}_1 + \overline{a}_3 b_2 a_1 & a_3 \overline{a}_2 b_1 + \overline{a} \end{bmatrix}$	$\overline{a_3} \overline{b_2} \overline{b_1} a_3 \overline{a_2} \overline{b_1} + \overline{a_3} \overline{b_2} b_1$
$\overline{a}_{3}a_{2}a_{1} + a_{3}b_{2}\overline{a}_{1} \qquad \overline{a}_{3}a_{2}\overline{a}_{1} + a_{3}b_{2}a_{1} \qquad \overline{a}_{3}\overline{a}_{2}b_{1} + a_{3}b_{3}a_{1} = a_{3}a_{2}a_{1} + a_{3}a_{2}a_{1} = a_{3}a_{2}a_{1} + a_{3}a_{2}a_{2}a_{1} = a_{3}a_{2}a_{1} + a_{3}a_{2}a_{2}a_{1} = a_{3}a_{2}a_{2}a_{1} + a_{3}a_{2}a_{2}a_{2} = a_{3}a_{2}a_{2}a_{2}a_{2} = a_{3}a_{2}a_{2}a_{2}a_{2}a_{2} = a_{3}a_{2}a_{2}a_{2}a_{2}a_{2} = a_{3}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2} = a_{3}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2}a_{2$	$\begin{bmatrix} a_3 \ \overline{b}_2 \ \overline{b}_1 & \overline{a}_3 \ \overline{a}_2 \ \overline{b}_1 + a_3 \ \overline{b}_2 b_1 \end{bmatrix}, \qquad (5)$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	${}_{3}b_{2} \underbrace{b_{1}}{-} \underbrace{b_{3}a_{2} b_{1} + b_{3}b_{2}b_{1}}{-}$
$\begin{bmatrix} b_{3} & a_{2}a_{1} + b_{3} & b_{2}a_{1} \end{bmatrix} = b_{3} & a_{2}a_{1} + b_{3} & b_{2}a_{1} \end{bmatrix} = b_{3}a_{2}b_{1} + b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}a_{2}b_{1} + b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}b_{3}$	$b_3 b_2 b_1 \qquad b_3 a_2 b_1 + b_3 b_2 b_1 \ \ \ \ \ \ \ \ \ \ \ \ \ $
运矩阵即为 $N = 4$ 可重排无阻塞双 hanyan 网络 $[1]$	
对应的变换矩阵 T . 它代表了双 banyan 网对光信号的 2	
整个处理过程,不仅可以实现输入信号阵列的矩阵运 $\mathbf{h} = \mathbf{T}$	
算,而且还可以确定各级节点开关对应的状态。33	4
3.2 节点开关状态	−0 0 0 1
$\lceil 1 \rceil$ $\lceil 4 \rceil$	$\mathbf{T} = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} . \tag{6}$
	$LO O 1 O \Box$

由(5)式、(6)式得到

$$\begin{bmatrix} a_{3}a_{2}a_{1} + \overline{a}_{3}b_{2}\overline{a}_{1} & a_{3}a_{2}\overline{a}_{1} + \overline{a}_{3}b_{2}a_{1} & a_{3}\overline{a}_{2}b_{1} + \overline{a}_{3}b_{2}b_{1} & a_{3}\overline{a}_{2}b_{1} + \overline{a}_{3}b_{2}b_{1} \\ \overline{a}_{3}a_{2}a_{1} + a_{3}b_{2}\overline{a}_{1} & \overline{a}_{3}a_{2}\overline{a}_{1} + a_{3}b_{2}a_{1} & \overline{a}_{3}\overline{a}_{2}b_{1} + a_{3}\overline{b}_{2}\overline{b}_{1} & \overline{a}_{3}\overline{a}_{2}\overline{b}_{1} + \overline{a}_{3}\overline{b}_{2}b_{1} \\ b_{3}\overline{a}_{2}a_{1} + \overline{b}_{3}\overline{b}_{2}\overline{a}_{1} & b_{3}\overline{a}_{2}\overline{a}_{1} + \overline{b}_{3}\overline{b}_{2}a_{1} & b_{3}a_{2}b_{1} + \overline{b}_{3}b_{2}\overline{b}_{1} \\ \overline{b}_{3}\overline{a}_{2}a_{1} + b_{3}\overline{b}_{2}\overline{a}_{1} & \overline{b}_{3}\overline{a}_{2}\overline{a}_{1} + b_{3}\overline{b}_{2}a_{1} & \overline{b}_{3}a_{2}b_{1} + b_{3}b_{2}\overline{b}_{1} & \overline{b}_{3}a_{2}\overline{b}_{1} + b_{3}b_{2}b_{1} \\ \hline b_{3}\overline{a}_{2}a_{1} + b_{3}\overline{b}_{2}\overline{a}_{1} & \overline{b}_{3}\overline{a}_{2}\overline{a}_{1} + b_{3}\overline{b}_{2}a_{1} & \overline{b}_{3}a_{2}b_{1} + b_{3}b_{2}\overline{b}_{1} & \overline{b}_{3}a_{2}\overline{b}_{1} + b_{3}b_{2}b_{1} \\ \hline b_{3}\overline{a}_{2}a_{1} + b_{3}\overline{b}_{2}\overline{a}_{1} & \overline{b}_{3}\overline{a}_{2}\overline{a}_{1} + b_{3}\overline{b}_{2}a_{1} & \overline{b}_{3}a_{2}b_{1} + b_{3}b_{2}\overline{b}_{1} & \overline{b}_{3}a_{2}\overline{b}_{1} + b_{3}b_{2}b_{1} \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

则有
$$a_3 \overline{a_2} \overline{b_1} + \overline{a_3} \overline{b_2} b_1 = 1$$
, $\overline{a_3} a_2 \overline{a_1} + a_3 b_2 a_1 = 1$, $b_3 \overline{a_2} a_1 + \overline{b_3} \overline{b_2} \overline{a_1} = 1$, $\overline{b_3} a_2 b_1 + b_3 b_2 \overline{b_1} = 1$.

由
$$a_3 \overline{a}_2 b_1 + \overline{a}_3 b_2 b_1 = 1$$
 得到 $\langle a_3 = 1, b_1 = 0, a_2 = 0 \rangle$, (8)

曲
$$\overline{a}_{3}a_{2}\overline{a}_{1} + a_{3}b_{2}a_{1} = 1$$
得到 $\begin{cases} a_{3} = 0, a_{1} = 0, a_{2} = 1 \\ a_{3} = 1, a_{1} = 1, b_{2} = 1 \end{cases}$, (9)

由
$$b_3 \overline{a}_2 a_1 + \overline{b}_3 \overline{b}_2 \overline{a}_1 = 1$$
 得到 $\left\{ \begin{array}{l} b_3 = 0, a_1 = 0, b_2 = 0\\ b_3 = 1, a_1 = 1, a_2 = 0 \end{array} \right\}$ (10)

由
$$\overline{b}_{3}a_{2}b_{1} + b_{3}b_{2}\overline{b}_{1} = 1$$
得到 $\begin{cases} b_{3} = 0, a_{2} = 1, b_{1} = 1 \\ b_{3} = 1, b_{1} = 0, b_{2} = 1 \end{cases}$, (11)

由(8)~(11)式得到

$$a_1 = 0, b_1 = 1, a_2 = 1, b_2 = 0, a_3 = 0, b_3 = 0,$$
 (12)

或

$$a_1 = 1, b_1 = 0, a_2 = 0, b_2 = 1, a_3 = 1, b_3 = 1,$$
 (13)

则各节点开关级对应的操作矩阵为

$$\begin{split} & \hat{\pi} - \bar{\tau} \le \mathfrak{Y} \\ & \hat{\pi} = \bar{\tau} \ge \mathfrak{Y} \\ & \hat{\pi} = \bar{\tau} = \bar{\tau} \ge \mathfrak{Y} \\ & \hat{\pi} = \bar{\tau} =$$

由此得到各级节点开关的状态,如图 3(a)和(b)所示。图中的虚线表示该节点开关处于交叉状态,其他则执行光信号的直通连接。很明显,该双 banyan 网络对输入信号的处理具有两种路由选择控制,即实现同样的变换操作和矩阵处理,其节点开关的状态和光信号的路由有两种方式可以完成。这说明该光互连网络的路由控制具有一定的解并度,在实际的信号处理过程中可以综合考虑控制的难易、信号路径的延迟、硬件成本代价等因素选择具体的路由和控制方式。

图 3 N=4 可重排无阻塞双榕树网节点状态。(a)第一路由规则;(b)第二路由规则

Fig. 3 Node stats of double banyan network when N=4. (a) first routing rule; (b) second routing rule

4 三维 banyan 网络矩阵运算

第3节讨论的是二维的光互连网络矩阵运算问题,其实质是实现向量与矩阵的运算,输入输出信号是一 维的线性阵列,光信号的传输和连接在同一个平面内完成。为了充分利用自由空间的并行性、灵活性以及高

(7)

的时空带宽积,同时,也考虑到实际的矩阵运算需要,即输入输出信号阵列和光互连网络变换矩阵均是空间的 二维面阵,为此,将二维的 banyan 网络按照一定的映射规则转变为自由空间的三维网络结构,如图 4 所示。

图 4 三维 banyan 网络 Fig. 4 Three dimensional banyan network

4.1 矩阵操作

如图 4 所示,三维 banyan 网络为分层结构,由两级 水平方向的互连和两级垂直方向的连接所构成,在水平 和垂直方向上均分为相同连接结构的四层。因此只需分 析一个方向上的一层互连即可,现在考虑水平方向上的 第一层连接关系。图 5(a)和(b)为水平方向第一层互连 对应的第一和第二级结构单元,根据 banyan 网络的特 点,第一和第二级水平结构单元链路函数对应的变换矩 阵分别为

图 5 第一级(a)和第二级(b)水平结构单元 Fig. 5 The first (a) and second (b) horizontal link

[1 () ()	0	0	0 () ())-]	Γ1	0	0	0	0	0 (ر0						[a_i	\overline{a}_i	0	0	0	0	0	0 -	7	
0 0) ()	0	1	0 () ())	0	0	1	0	0	0 0	0							\overline{a}_i	a_i	0	0	0	0	0	0		
0 () 1	0	0	0 () ())	0	1	0	0	0	0 (0							0	0	b_i	\overline{b}_i	0	0	0	0		
0 () ()	0	0	0 1	l 0)	0	0	0	1	0	0 (0		1			at. 10		0	0	\overline{b}_i	b_i	0	0	0	0		
0 1	0	0	0	0 () ()) 和	0	0	0	0	1	0 0	0	,节.	点级	对应	的矩	阵 操	作	0	0	0	0	C_i	\overline{C}_i	0	0		•
0 0) ()	0	0	1 () ())	0	0	0	0	0) 1	0							0	0	0	0	\overline{C}_i	C_i	0	0		
0 0) ()	1	0	0 () ())	0	0	0	0	0	10	0							0	0	0	0	0	0	d_i	\overline{d}_{i}		
Lo () ()	0	0	0 () 1		Lo	0	0	0	0	0 (1							0	0	0	0	0	0	\overline{d}_{i}	d:		011 N
下面	「面推导三维 banyan 网的功能矩阵操作。																												
T 画性 寸 _ 年 banyan 四时 初 肥 足 臼 探 臼 。 1)水 平 方 向 连 接 第 一 层 第 一 链 路 级 变 换 矩 阵																													
	[]	0	0	0 () () () ()- ר(Гa	1	ā	- 1	0		0	0	0	0	0 -		$\lceil a_1 \rceil$	\overline{a}_1	0	0	0	0	()	ך 0	
	0	0	0	0	1 () () ()	\overline{a}	-	а	1	0		0	0	0	0	0		0	0	0	0	\mathcal{C}_1	\overline{C}_1	()	0	
	0	0	1	0 () () () (()	()	b_1		\overline{b}_1	0	0	0	0		0	0	b_1	\overline{b}_{1}	0	0	()	0	
	0	0	0	0 () () 1 (()	()	\overline{b}	1	b_1	0	0	0	0		0	0	0	0	0	0	d	1	\overline{d}_1	
	0	1	0	0 () ())	()	0	1	0	61	$\frac{1}{C}$	0	0	=	$\left \frac{1}{a} \right $	<i>a</i> ₁	0	0	0	0	()	0	,(14)
	0	0	0	0 () 1)))	()	0		0	$\frac{c_1}{c_1}$	с ₁	0	0			0	0	0	$\frac{1}{C}$	6	()	0	
		0	0	1 () ())	())	0		0	0	0	d	$\frac{1}{d}$			0	$\frac{1}{h}$	ь ь	0	0	0	,)		
		0	0	1 \ 0 (ı) \	()	0		0	0	0	$\frac{u_1}{\overline{J}}$	u_1			0	0	v_1	0	0	7	-		
n d	∪_ • च7	, ,	. –	~~~	. (ר∟ גר–	L (י די	(⊢/a	/ ナート	0 - 11 -	· /r=*	0	U	U	a_1	a_1]	ΓU	U	U	U	U	U	а	1	$u_1 \sqcup$	

2)水平方向第一层第二节点级操作矩阵

		0 7	0	0	0	0	0	\overline{a}_1	a_1	0]	0	0	0	0	0	\overline{a}_2	a_2
		0	0	$\overline{\mathcal{C}}_1$	C_1	0	0	0	0	0	0	0	0	0	0	a_2	\overline{a}_2
		0	0	0	0	\overline{b}_1	b_1	0	0	0	0	0	0	\overline{b}_2	b_2	0	0
		\overline{d}_1	d_1	0	0	0	0	0	0	0	0	0	0	b_2	\overline{b}_2	0	0
	=	0	0	0	0	0	0	a_1	\overline{a}_1	0	0	$\overline{\mathcal{C}}_2$	C_2	0	0	0	0
		0	0	\mathcal{C}_1	\overline{c}_1	0	0	0	0	0	0	C_2	$\overline{\mathcal{C}}_2$	0	0	0	0
		0	0	0	0	b_1	\overline{b}_1	0	0	\overline{d}_2	d_2	0	0	0	0	0	0
		$d_1 \rfloor$	\overline{d}_1	0	0	0	0	0	0	d_2]	\overline{d}_2	0	0	0	0	0	0
					7	0	0		$\overline{c}_1 \overline{a}_2$	\overline{a}_2	C_1	0	0	($\overline{a}_1 a_2$	l_2	a_1a
						0	0		$\overline{c}_1 a_2$	$_{1}a_{2}$	C	0	0	($\overline{a}_1 \overline{a}_2$	2	$a_1 \bar{a}$
					2	$\overline{d}_1 \overline{b}$	$a_1 \overline{b}_2$	d	0	0		$\overline{b}_1 b_2$	b_2	b_1	0		0
(15)						$\overline{d}_1 b_2$	d_1b_2	С	0	0		$\overline{b}_1 \overline{b}_2$	\overline{b}_2	b_1	0		0
(15)					,	0	0		$c_1 \overline{c}_2$	$1 \overline{c}_2$	\overline{C}	0	0	($a_1 c_2$	C2	\overline{a}_1
						0	0		$c_1 c_2$	${1}c_{2}$	\overline{C}	0	0	($a_1 \overline{c}_2$	C 2	\overline{a}_1
						$d_1 \overline{d}_1$	$\overline{d}_1 \overline{d}_2$	\overline{d}	0	0		$b_1 d_2$	$_{1}d_{2}$	\overline{b}_1	0		0
						$d_1 d_2$	$\overline{l}_1 d_2$	ā	0	0		$b_1 \overline{d}_2$	\overline{d}_{2}	\overline{b}_1	0		0

3)水平方向连接第一层第二链路级变换矩阵

4)水平方向第一层第三节点级操作矩阵

$\int a_3$	\overline{a}_{3}	0	0	0	0	0	0 7	$\int a_1 a_2$	$\overline{a}_1 a_2$	0	0	$c_1 \overline{a}_2$	$\overline{c}_1 \overline{a}_2$	0	0 7	
\overline{a}_{3}	a_3	0	0	0	0	0	0	0	0	b_1b_2	$\overline{b}_1 b_2$	0	0	$d_1 \ \overline{b}_2$	$\overline{d}_1 \overline{b}_2$	
0	0	b_3	\overline{b}_{3}	0	0	0	0	$a_1 \overline{a}_2$	$\overline{a}_1 \overline{a}_2$	0	0	$c_1 a_2$	$\overline{c}_1 a_2$	0	0	
0	0	\overline{b}_{3}	b_3	0	0	0	0	0	0	$b_1 \ \overline{b}_2$	$\overline{b}_1 \ \overline{b}_2$	0	0	d_1b_2	$\overline{d}_1 b_2$	_
0	0	0	0	C_3	\overline{C}_3	0	0	$\overline{a}_1 c_2$	$a_1 c_2$	0	0	$\overline{c}_1 \ \overline{c}_2$	$c_1 \ \overline{c}_2$	0	0	_
0	0	0	0	\overline{C}_{3}	C_3	0	0	0	0	$\overline{b}_1 d_2$	$b_1 d_2$	0	0	$\overline{d}_1 \overline{d}_2$	$d_1 \overline{d}_2$	
0	0	0	0	0	0	d_3	\overline{d}_{3}	$\overline{a}_1 \overline{c}_2$	$a_1 \overline{c}_2$	0	0	$\overline{c}_1 c_2$	$C_1 C_2$	0	0	
0	0	0	0	0	0	\overline{d}_{3}	d_3	0	0	$\overline{b}_1 \overline{d}_2$	$b_1 \overline{d}_2$	0	0	$\overline{d}_1 d_2$	d_1d_2	

$a_1 a_2 a_3$	$\overline{a}_1 a_2 a_3$	$b_1b_2 \overline{a}_3$	$\overline{b}_1 b_2 \overline{a}_3$	$c_1 \overline{a}_2 a_3$	$\overline{c}_1 \overline{a}_2 a_3$	$d_1 \overline{b}_2 \overline{a}_3$	$\overline{d}_1 \overline{b}_2 \overline{a}_3$		
$a_1a_2 \overline{a}_3$	$\overline{a}_1 a_2 \ \overline{a}_3$	$b_1 b_2 a_3$	$\overline{b}_1 b_2 a_3$	$c_1 \overline{a}_2 \overline{a}_3$	$\overline{c}_1 \overline{a}_2 \overline{a}_3$	$d_1 \overline{b}_2 a_3$	$\overline{d}_1 \overline{b}_2 a_3$		
$a_1 \overline{a}_2 b_3$	$\overline{a}_1 \overline{a}_2 b_3$	$b_1 \ \overline{b}_2 \ \overline{b}_3$	$\overline{b}_1 \ \overline{b}_2 \ \overline{b}_3$	$c_1 a_2 b_3$	$\overline{c}_1 a_2 b_3$	$d_1b_2 \ \overline{b}_3$	$\overline{d}_1 b_2 \overline{b}_3$		
$a_1 \overline{a}_2 \overline{b}_3$	$\overline{a}_1 \overline{a}_2 \overline{b}_3$	$b_1 \ \overline{b}_2 b_3$	$\overline{b}_1 \ \overline{b}_2 b_3$	$c_1 a_2 \overline{b}_3$	$\overline{c}_1 a_2 \overline{b}_3$	$d_1b_2b_3$	$\overline{d}_1 b_2 b_3$		(17)
$\overline{a}_1 c_2 c_3$	$a_1 c_2 c_3$	$\overline{b}_1 d_2 \ \overline{c}_3$	$b_1 d_2 \overline{c}_3$	$\overline{c}_1 \overline{c}_2 c_3$	$c_1 \overline{c}_2 c_3$	$\overline{d}_1 \overline{d}_2 \overline{c}_3$	$d_1 \overline{d}_2 \overline{c}_3$,	(17)
$\overline{a}_1 c_2 \overline{c}_3$	$a_1c_2 \overline{c}_3$	$\overline{b}_1 d_2 c_3$	$b_1 d_2 c_3$	$\overline{c}_1 \ \overline{c}_2 \ \overline{c}_3$	$c_1 \overline{c}_2 \overline{c}_3$	$\overline{d}_1 \overline{d}_2 c_3$	$d_1 \overline{d}_2 c_3$		
$\overline{a}_1 \overline{c}_2 d_3$	$a_1 \overline{c}_2 d_3$	$\overline{b}_1 \overline{d}_2 \overline{d}_3$	$b_1 \overline{d}_2 \overline{d}_3$	$\overline{c}_1 c_2 d_3$	$c_1 c_2 d_3$	$\overline{d}_1 d_2 \overline{d}_3$	$d_1 d_2 \overline{d}_3$		
$\overline{a}_1 \overline{c}_2 \overline{d}_3$	$a_1 \overline{c}_2 \overline{d}_3$	$\overline{b}_1 \overline{d}_2 d_3$	$b_1 \overline{d}_2 d_3$	$\overline{c}_1 c_2 \overline{d}_3$	$c_1 c_2 \overline{d}_3$	$\overline{d}_1 d_2 d_3$	$d_1 d_2 d_3$		

对于垂直方向上的连接矩阵,只需要将水平方向上对应的变换矩阵转置即可。将上面给出的水平方向 上链路函数的变换矩阵转置,得到垂直结构单元链路函数对应的变换矩阵。由上面给出的矩阵可知,它们的 转置矩阵不变,即水平连接和垂直连接的变换矩阵相同,这一点从水平连接和垂直连接的链路结构相同也得 到证实。因此,由(16)式得到垂直方向连接的变换矩阵为

$$\begin{bmatrix} a_{4}a_{5} & \overline{a}_{4}a_{5} & 0 & 0 & c_{4}\overline{a}_{5} & \overline{c}_{4}\overline{a}_{5} & 0 & 0 \\ 0 & 0 & b_{4}b_{5} & \overline{b}_{4}b_{5} & 0 & 0 & d_{4}\overline{b}_{5} & \overline{d}_{4}\overline{b}_{5} \\ a_{4}\overline{a}_{5} & \overline{a}_{4}\overline{a}_{5} & 0 & 0 & c_{4}a_{5} & \overline{c}_{4}a_{5} & 0 & 0 \\ 0 & 0 & b_{4}\overline{b}_{5} & \overline{b}_{4}\overline{b}_{5} & 0 & 0 & d_{4}b_{5} & \overline{d}_{4}b_{5} \\ \overline{a}_{4}c_{5} & a_{4}c_{5} & 0 & 0 & \overline{c}_{4}\overline{c}_{5} & c_{4}\overline{c}_{5} & 0 & 0 \\ 0 & 0 & \overline{b}_{4}d_{5} & b_{4}d_{5} & 0 & 0 & \overline{d}_{4}\overline{d}_{5} & d_{4}\overline{d}_{5} \\ \overline{a}_{4}\overline{c}_{5} & a_{4}\overline{c}_{5} & 0 & 0 & \overline{c}_{4}c_{5} & c_{4}c_{5} & 0 & 0 \\ 0 & 0 & \overline{b}_{4}\overline{d}_{5} & b_{4}\overline{d}_{5} & 0 & 0 & \overline{d}_{4}d_{5} & d_{4}\overline{d}_{5} \\ 0 & 0 & \overline{b}_{4}\overline{d}_{5} & b_{4}\overline{d}_{5} & 0 & 0 & \overline{d}_{4}d_{5} & d_{4}d_{5} \end{bmatrix},$$

$$(18)$$

最后由(17)式和(18)式得到整个三维 banyan 网络的变换矩阵为

$$\mathbf{T} = \begin{bmatrix} a_{4}a_{5} & \overline{a}_{4}a_{5} & 0 & 0 & c_{4}\overline{a}_{5} & \overline{c}_{4}\overline{a}_{5} & 0 & 0 \\ 0 & 0 & b_{4}b_{5} & \overline{b}_{4}b_{5} & 0 & 0 & d_{4}\overline{b}_{5} & \overline{d}_{4}\overline{b}_{5} \\ a_{4}\overline{a}_{5} & \overline{a}_{4}\overline{a}_{5} & 0 & 0 & c_{4}a_{5} & \overline{c}_{4}a_{5} & 0 & 0 \\ 0 & 0 & b_{4}\overline{b}_{5} & \overline{b}_{4}\overline{b}_{5} & 0 & 0 & d_{4}b_{5} & \overline{d}_{4}b_{5} \\ \overline{a}_{4}c_{5} & a_{4}c_{5} & 0 & 0 & \overline{c}_{4}\overline{c}_{5} & c_{4}\overline{c}_{5} & 0 & 0 \\ 0 & 0 & \overline{b}_{4}d_{5} & b_{4}d_{5} & 0 & 0 & \overline{d}_{4}\overline{d}_{5} & d_{4}\overline{d}_{5} \\ \overline{a}_{4}\overline{c}_{5} & a_{4}\overline{c}_{5} & 0 & 0 & \overline{c}_{4}c_{5} & c_{4}c_{5} & 0 & 0 \\ 0 & 0 & \overline{b}_{4}\overline{d}_{5} & b_{4}\overline{d}_{5} & 0 & 0 & \overline{d}_{4}\overline{d}_{5} & d_{4}\overline{d}_{5} \\ 0 & 0 & \overline{b}_{4}\overline{d}_{5} & b_{4}\overline{d}_{5} & 0 & 0 & \overline{d}_{4}\overline{d}_{5} & d_{4}\overline{d}_{5} \\ 1a_{1}a_{2}a_{3} & \overline{a}_{1}a_{2}a_{3} & b_{1}b_{2}\overline{a}_{3} & \overline{b}_{1}b_{2}\overline{a}_{3} & c_{1}\overline{a}_{2}a_{3} & \overline{c}_{1}\overline{a}_{2}a_{3} & d_{1}\overline{b}_{2}\overline{a}_{3} \\ 1a_{1}a_{2}\overline{a}_{3} & \overline{a}_{1}a_{2}\overline{a}_{3} & b_{1}b_{2}a_{3} & \overline{b}_{1}b_{2}a_{3} & c_{1}\overline{a}_{2}\overline{a}_{3} & \overline{c}_{1}a_{2}b_{3} & \overline{d}_{1}\overline{b}_{2}b_{3} \\ a_{1}\overline{a}_{2}b_{3} & \overline{a}_{1}\overline{a}_{2}b_{3} & b_{1}\overline{b}_{2}b_{3} & \overline{b}_{1}\overline{b}_{2}b_{3} & \overline{c}_{1}a_{2}\overline{b}_{3} & \overline{c}_{1}a_{2}\overline{b}_{3} & d_{1}b_{2}b_{3} & \overline{d}_{1}b_{2}b_{3} \\ \overline{a}_{1}\overline{c}_{2}\overline{c}_{3} & a_{1}c_{2}\overline{c}_{3} & \overline{b}_{1}d_{2}\overline{c}_{3} & b_{1}d_{2}\overline{c}_{3} & \overline{c}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{c}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} \\ \overline{a}_{1}\overline{c}_{2}\overline{c}_{3} & a_{1}\overline{c}_{2}\overline{d}_{3} & \overline{b}_{1}\overline{d}_{2}\overline{d}_{3} & b_{1}\overline{d}_{2}\overline{d}_{3} & \overline{c}_{1}c_{2}\overline{d}_{3} & \overline{c}_{1}c_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} \\ \overline{a}_{1}\overline{c}_{2}\overline{d}_{3} & a_{1}\overline{c}_{2}\overline{d}_{3} & \overline{b}_{1}\overline{d}_{2}\overline{d}_{3} & \overline{c}_{1}c_{2}\overline{d}_{3} & \overline{c}_{1}c_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{d}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{d}_{3} \\ \overline{a}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{a}_{1}\overline{d}_{2}\overline{c}_{3} & \overline{c}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{c}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} & \overline{d}_{1}\overline{d}_{2}\overline{c}_{3} \\ \overline{a}_{1}\overline{c}_{2}\overline{c}_{3} & \overline{a}_{1}\overline{d}_{2}\overline{c}_{3} & \overline{b}_{1}\overline{d}_{2}\overline$$

值得注意的是(19)式为三维 banyan 网络第一 层水平连接和垂直连接对应的变换矩阵,由于 banyan 网四层结构均相同,因此它们对应的变换矩 阵也一样,也就是说(19)式即代表了整个三维 banyan 网络的变换矩阵。

4.2 节点开关状态

根据得到的光互连网络的变换矩阵,不仅可以 实现输入信号阵列的矩阵运算,得到需要的信号变 换与处理结果;而且,还可由此判断和确定各级节点 开关的状态,完成光信号的路由和控制。若输入信

	Γ1	2	3	4	5	6	7	ך 8	
已佑防斗	9	10	11	12	13	14	15	16	
亏起阵力:	17	18	19	20	21	22	23	24	·
	25	26	27	28	29	30	31	32	
由于 banyar	n榕标	时网络	各是分	分层组	结构,	每层	网络	结构	句的

连接规则都一样,光信号在每层的运算与处理均相互 独立而互不影响,因此,只需讨论其中的一层矩阵运 算即可,相同的操作处理重复于其他三层,最后即得 到整个三维 banyan 网络的输出矩阵。现在对第一层 水平方向连接进行讨论,由输入信号矩阵可得到

	$a_1 a_2 a_3$	$\overline{a}_1 a_2 a_3$	$b_1b_2 \overline{a}_3$	$\overline{b}_1 b_2 \ \overline{a}_3$	$c_1 \overline{a}_2 a_3$	$\overline{c}_1 \overline{a}_2 a_3$	$d_1 \overline{b}_2 \overline{a}_3$	$\overline{d}_1 \overline{b}_2 \overline{a}_3$	[17	
	$a_1a_2 \overline{a}_3$	$\overline{a}_1 a_2 \overline{a}_3$	$b_1b_2a_3$	$\overline{b}_1 b_2 a_3$	$c_1 \overline{a}_2 \overline{a}_3$	$\overline{c}_1 \overline{a}_2 \overline{a}_3$	$d_1 \ \overline{b}_2 a_3$	$\overline{d}_1 \overline{b}_2 a_3$	2	
	$a_1 \overline{a}_2 b_3$	$\overline{a}_1 \overline{a}_2 b_3$	$b_1 \ \overline{b}_2 \ \overline{b}_3$	$\overline{b}_1 \overline{b}_2 \overline{b}_3$	$c_1 a_2 b_3$	$\overline{c}_1 a_2 b_3$	$d_1b_2 \ \overline{b}_3$	$\overline{d}_1 b_2 \ \overline{b}_3$	3	
	$a_1 \overline{a}_2 \overline{b}_3$	$\overline{a}_1 \overline{a}_2 \overline{b}_3$	$b_1 \ \overline{b}_2 b_3$	$\overline{b}_1 \overline{b}_2 b_3$	$c_1a_2 \overline{b}_3$	$\overline{c}_1 a_2 \overline{b}_3$	$d_1b_2b_3$	$\overline{d}_1 b_2 b_3$	4	_
	$\overline{a}_1 c_2 c_3$	$a_1 c_2 c_3$	$\overline{b}_1 d_2 \overline{c}_3$	$b_1 d_2 \overline{c}_3$	$\overline{C}_1 \overline{C}_2 C_3$	$C_1 \overline{C}_2 C_3$	$\overline{d}_1 \overline{d}_2 \overline{c}_3$	$d_1 \overline{d}_2 \overline{c}_3$	5	_
	$\overline{a}_1 c_2 \overline{c}_3$	$a_1c_2 \overline{c}_3$	$\overline{b}_1 d_2 c_3$	$b_1 d_2 c_3$	$\overline{C}_1 \overline{C}_2 \overline{C}_3$	$c_1 \overline{c}_2 \overline{c}_3$	$\overline{d}_1 \overline{d}_2 c_3$	$d_1 \overline{d}_2 c_3$	6	
	$\overline{a}_1 \overline{c}_2 d_3$	$a_1 \overline{c}_2 d_3$	$\overline{b}_1 \overline{d}_2 \overline{d}_3$	$b_1 \overline{d}_2 \overline{d}_3$	$\overline{c}_1 c_2 d_3$	$c_1 c_2 d_3$	$\overline{d}_{\scriptscriptstyle 1} d_{\scriptscriptstyle 2} \overline{d}_{\scriptscriptstyle 3}$	$d_1d_2\overline{d}_3$	7	
	$\bar{a}_1 \overline{c}_2 \overline{d}_3$	$a_1 \overline{c}_2 \overline{d}_3$	$\overline{b}_1 \overline{d}_2 d_3$	$b_1 \overline{d}_2 d_3$	$\overline{c}_1 c_2 \overline{d}_3$	$c_1 c_2 \overline{d}_3$	$\overline{d}_{\scriptscriptstyle 1} d_{\scriptscriptstyle 2} d_{\scriptscriptstyle 3}$	$d_1 d_2 d_3$	_8_	
[$-1a_1a_2a_3 +$	$2\overline{a}_1a_2a_3+$	$3b_1b_2 \overline{a}_3 +$	$4 \overline{b}_1 b_2 \overline{a}_3 +$	$5c_1 \overline{a}_2 a_3 +$	$6 \overline{c}_1 \overline{a}_2 a_3 +$	$-7d_1 \overline{b}_2 \overline{a}_3 -$	$+ 8 \overline{d}_1 \overline{b}_2 \overline{a}_3$	7	
	$1a_1a_2 \overline{a}_3 +$	$-2\overline{a}_1a_2\overline{a}_3$	$+ 3b_1b_2a_3 +$	$4 \overline{b}_{1} b_{2} a_{3} +$	$5c_1 \overline{a}_2 \overline{a}_3 +$	$6 \overline{c}_1 \overline{a}_2 \overline{a}_3$	$+7d_1 \overline{b}_2 a_3$	$+ 8 \overline{d}_1 \overline{b}_2 a_3$		
	$1a_1 \overline{a}_2 b_3 \dashv$	$+2\overline{a}_1\overline{a}_2b_3$	$+ 3b_1 \overline{b}_2 \overline{b}_3$	$+4\overline{b}_{1}\overline{b}_{2}\overline{b}_{2}$	$\overline{b}_{3} + 5c_{1}a_{2}b_{3}$	$+ 6 \overline{c}_{1} a_{2} b_{3}$	$+7d_1b_2 \overline{b}_3$	$+ 8 \overline{d}_1 b_2 \overline{b}_3$		
	$1a_1 \overline{a}_2 \overline{b}_3$	$+2\overline{a_1}\overline{a_2}\overline{b}$	$\overline{b}_{3} + 3b_{1} \overline{b}_{2}b_{3}$	$b_3 + 4 \overline{b}_1 \overline{b}_2$	$b_3 + 5c_1a_2 \overline{b}$	$\overline{a}_3 + 6 \overline{c}_1 a_2 \overline{b}_1$	$\overline{b}_{3} + 7d_{1}b_{2}b_{3}$	$_{3} + 8 \overline{d}_{1} b_{2} b_{3}$		(20)
	$1 \overline{a}_{1} c_{2} c_{3} +$	$-2a_1c_2c_3+3$	$3 \overline{b}_1 d_2 \overline{c}_3 +$	$4b_1d_2 \overline{c}_3 +$	$5\overline{c}_1\overline{c}_2c_3 +$	$-6c_1 \overline{c}_2 c_3 +$	$7 \overline{d}_1 \overline{d}_2 \overline{c}_3$	$+ 8d_1 \overline{d}_2 \overline{c}_3$,	(20)
	$1 \overline{a}_1 c_2 \overline{c}_3$	$+2a_{1}c_{2}\overline{c}_{3}$	$+ 3 \overline{b}_{1} d_{2} c_{3} -$	$+4b_1d_2c_3+$	$5\overline{c}_1\overline{c}_2\overline{c}_3$	$+6c_1 \overline{c}_2 \overline{c}_3$	$+7\overline{d}_{1}\overline{d}_{2}c_{3}$	$_{3}+8d_{1}\overline{d}_{2}c_{3}$		
	$1\overline{a}_1\overline{c}_2d_3$ -	$+2a_1 \overline{c}_2 d_3$	$+ 3 \overline{b}_1 \overline{d}_2 \overline{d}$	$\overline{d}_3 + 4b_1 \overline{d}_2 \overline{d}_2$	$\overline{l}_3 + 5 \overline{c}_1 c_2 d$	$d_3 + 6c_1c_2d_3$	$+7\overline{d}_{_1}d_{_2}\overline{d}$	$\overline{d}_3 + 8d_1d_2 \overline{d}_3$		
	$1 \overline{a}_1 \overline{c}_2 \overline{d}_3$	$+2a_1 \overline{c}_2 \overline{d}_3$	$_{3}+3\overline{b}_{1}\overline{d}_{2}a$	$d_3 + 4b_1 \overline{d}_2 d$	$d_3 + 5 \overline{c}_1 c_2 \overline{c}_1$	$\overline{l}_3 + 6c_1c_2 \overline{d}$	$\overline{d}_3 + 7 \overline{d}_1 d_2 d_3$	$d_3 + 8d_1d_2d_3$		
_										

若第一层水平连接对应的输出信号为

 $1a_1a_2a_3 + 2\overline{a_1}a_2a_3 + 3b_1b_2\overline{a_3} + 4\overline{b_1}b_2\overline{a_3} + 5c_1\overline{a_2}a_3 + 6\overline{c_1}\overline{a_2}a_3 + 7d_1\overline{b_2}\overline{a_3} + 8\overline{d_1}\overline{b_2}\overline{a_3}$ -4 $1a_1a_2\overline{a_3} + 2\overline{a_1}a_2\overline{a_3} + 3b_1b_2a_3 + 4\overline{b_1}b_2a_3 + 5c_1\overline{a_2}\overline{a_3} + 6\overline{c_1}\overline{a_2}\overline{a_3} + 7d_1\overline{b_2}a_3 + 8\overline{d_1}\overline{b_2}a_3$ 6 $1a_1\overline{a}_2b_3 + 2\overline{a}_1\overline{a}_2b_3 + 3b_1\overline{b}_2\overline{b}_3 + 4\overline{b}_1\overline{b}_2\overline{b}_3 + 5c_1a_2b_3 + 6\overline{c}_1a_2b_3 + 7d_1b_2\overline{b}_3 + 8\overline{d}_1b_2\overline{b}_3$ 7 $1a_1 \overline{a}_2 \overline{b}_3 + 2 \overline{a}_1 \overline{a}_2 \overline{b}_3 + 3b_1 \overline{b}_2 b_3 + 4 \overline{b}_1 \overline{b}_2 b_3 + 5c_1 a_2 \overline{b}_3 + 6 \overline{c}_1 a_2 \overline{b}_3 + 7d_1 b_2 b_3 + 8 \overline{d}_1 b_2 b_3$ 2 $1\overline{a}_{1}c_{2}c_{3}+2a_{1}c_{2}c_{3}+3\overline{b}_{1}d_{2}\overline{c}_{3}+4b_{1}d_{2}\overline{c}_{3}+5\overline{c}_{1}\overline{c}_{2}c_{3}+6c_{1}\overline{c}_{2}c_{3}+7\overline{d}_{1}\overline{d}_{2}\overline{c}_{3}+8d_{1}\overline{d}_{2}\overline{c}_{3}$ 1 $1\overline{a}_1c_2\overline{c}_3 + 2a_1c_2\overline{c}_3 + 3\overline{b}_1d_2c_3 + 4b_1d_2c_3 + 5\overline{c}_1\overline{c}_2\overline{c}_3 + 6c_1\overline{c}_2\overline{c}_3 + 7\overline{d}_1\overline{d}_2c_3 + 8d_1\overline{d}_2c_3$ 3 8 $1\overline{a_1}\overline{c_2}d_3 + 2a_1\overline{c_2}d_3 + 3\overline{b_1}\overline{d_2}\overline{d_3} + 4b_1\overline{d_2}\overline{d_3} + 5\overline{c_1}c_2d_3 + 6c_1c_2d_3 + 7\overline{d_1}d_2\overline{d_3} + 8d_1d_2\overline{d_3}$ 5 $1\overline{a_1}\overline{c_2}\overline{d_3} + 2a_1\overline{c_2}\overline{d_3} + 3\overline{b_1}\overline{d_2}d_3 + 4b_1\overline{d_2}d_3 + 5\overline{c_1}c_2\overline{d_3} + 6c_1c_2\overline{d_3} + 7\overline{d_1}d_2d_3 + 8d_1d_2d_3$

(21)

则得到: $\overline{b}_1 b_2 \overline{a}_3 = 1$, $\overline{c}_1 \overline{a}_2 \overline{a}_3 = 1$, $d_1 b_2 \overline{b}_3 = 1$, $\overline{a}_1 \overline{a}_2 \overline{b}_3 = 1$, $\overline{a}_1 c_2 c_3 = 1$, $\overline{b}_1 d_2 c_3 = 1$, $d_1 d_2 \overline{d}_3 = 1$, $\overline{c}_1 c_2 \overline{d}_3 = 1$ 。

由此得到 $a_1 = 0, b_1 = 0, c_1 = 0, d_1 = 1; a_2 = 0,$ $b_2 = 1, c_2 = 1, d_2 = 1; a_3 = 0, b_3 = 0, c_3 = 1, d_3 = 0.$ 图中虚线表示该节点开关的状态,如图 6 所示。 图中虚线表示该节点开关处于交叉状态。由于 水平和垂直连接具有相同的空间结构,它们链路函 数对应的矩阵互为转置,而且相等。因此,完成水平 连接矩阵运算的光信号,其后续的垂直方向的连接 对应的矩阵运算操作和前面一样,最后得到所需要 的光信号输出矩阵,并完成垂直方向上各节点开关 状态的确定。同样的操作过程依次作用于第二、第 三和第四层空间结构,最后即完成整个输入信号阵 列的矩阵运算和各节点开关状态的确定,详细的讨 论过程省略。

图 6 三维 banyan 网节点状态确定 Fig. 6 Code states of three dimensional banyan network

5 结 论

自由空间光互连网络在光通信、光信息处理和 光计算中具有重要的作用。根据二维 banyan 网络 的链路函数和连接规则,建立其对应的光信号变换 矩阵,将光互连网络对信号的传输与处理,等效为对 输入信号阵列的矩阵运算,即通过 banyan 网络变换 矩阵代替实际的信号处理过程,建立了输入和输出 信号之间的关系;同时,将二维 banyan 网矩阵运算 拓展到三维空间,将自由空间三维榕树网络的交换 和信号处理进行矩阵运算等效,得到其光互连网络 变换矩阵 T,并最终实现光信号的节点开关控制和 路由判断。该方法同样适用于全混洗、全交叉等规 则互连的自由空间光网络,从理论上解决了利用光 互连网络的拓扑结构性质和节点开关状态的调整, 实现可控的矩阵运算操作问题,输出信号矩阵即为 光信号交换与处理后的结果。同时,光互连网络的 矩阵运算研究对于节点开关状态的判断与确定、光 信号的路由选择与控制都具有非常重要的意义,为 多端口大容量高速光互连网络的信号传输与交换、 运算与处理、路由与控制等提供了一种方法。

参考文献

- 1 Q. Chen, X. Lin, L. Niu *et al.*. Dammann grating as integratable micro-optical elements created by laser micronanofabrication via two-photon photopolymerization [J]. *Opt. Lett.*, 2008, **33**(21); 2559~2561
- Sapiens, A. Weissbrod, A. J. Agranat. Fast electroholographic switching [J]. Opt. Lett., 2009, 34(3): 353~355
- 3 Yang Junbo, Su Xianyu. Polarization-dependent and polarizationindependent 4 × 4 free-space optical switch [J]. Chinese J. Lasers, 2007, 34(3): 383~388

杨俊波,苏显渝. 与偏振相关和无关的 4×4 自由空间光开关 [J]. 中国激光,2007,**34**(3): 383~388

- 4 Liu Yanting, Ni Wei, Wu Xingkun. A soft-lithography-based vertically coupling structure for multilayered optical interconnection [J]. Acta Optica Sinica, 2008, 28(2): 349~354 刘彦婷,倪 玮,吴兴坤. 基于软光刻的多层光互连垂直耦合结 构[J]. 光学学报, 2008, 28(2): 349~354
- 5 Ziping Hu, P. Verma, J. Sluss, Jr.. Improved reliability of free-space optical mesh networks through topology design [J]. J. Opt. Netw., 2008, 7(5): 436~448
- 6 C. Reardon, A. D. Falco, K. Welna *et al.*. Integrated polymer microprisms for free space optical beam deflecting [J]. *Opt. Express*, 2009, **17**(5): 3424~3428
- 7 Junbo Yang, Xianyu Su, Ping Xu. Perfect shuffle transform based on a microblazed grating array [J]. Appl. Opt., 2007, 46(2): 210~215
- 8 Junbo Yang, Xianyu Su. Design of a free-space 3-D crossover optical network [J]. Photon. Netw. Commun., 2007, 14(2): 223~228
- 9 Yang Junbo, Su Xianyu. An implemental method of twodimensional banyan network in free space [J]. Chinese J. Lasers, 2006, 33(12): 1636~1642
 杨俊波,苏显渝. 自由空间二维榕树网实现方法 [J]. 中国激光, 2006, 33(12): 1636~1642
- 10 Zha Ying, Sun Degui, Liu Tiegen *et al.*. Rearrangeable nonblocking 8×8 optical matrix switch with extended banyan network [J]. Optics and Precision Engineering, 2007, **15**(1): $50 \sim 56$

查 英, 孙德贵, 刘铁根 等. 扩展 banyan 网络的可重构无阻塞 8×8 矩阵光开关 [J]. 光学精密エ程, 2007, **15**(1): 50~56

- 11 Junbo Yang, Xianyu Su. Optical implementaion of (3, 3, 2) regular rectangular CC-banyan optical network [J]. Opt. Commun., 2007, 275(1): 57~64
- 12 Junbo Yang, Xianyu Su, Ping Xu. Study for optical implementation of SW-banyan network by using polarization control technology [J]. Opt. Eng., 2008, 47(3): 1~8
- 13 M. Hossain, S. Ghanta, M. Guizani. Optical realization of a clos nonblocking broadcast switching network with constant time network controal algorithm [J]. Appl. Opt., 1993, 32(5): 665~673
- 14 Li Hongpu, Cao Mingcui, Luo Fengguang *et al.*. On perfect shuffle optic interconnection using the matrix method [J]. J. *Huazhong Univ. of Sci. & Tech.*, 1994, 22(3): 112~116

李洪谱,曹明翠,罗风光等.全混洗光互连的矩阵处理与研究 [J].华中理工大学学报,1994,**22**(3):112~116

- 15 Ai Jun, Cao Mingcui, Li Zaiguang *et al.*. Interconnection matrix of the banyan network and its simulation study [J]. Acta Optica Sinica, 1994, 14(5): 513~517
 艾 军,曹明翠,李再光等. 榕树网络的互连矩阵与模拟研究
 - 又 4, 胃叻率, 学共元 等. 格树网络的互连起阵与模拟研究 [J]. 光学学报, 1994, 14(5): 513~517
- 16 Hu Qiaoyan, Cao Mingcui, Luo Fengguang. Optical matrix switch based on polarization [J]. Chinese J. Lasers, 2003, 30(1): 33~37
 胡巧燕,曹明翠,罗风光. 基于偏振的光矩阵开关 [J]. 中国激光, 2003, 30(1): 33~37
- 17 Luo Fengguang, Cao Mingcui, Xie Hu *et al.*. 4×4 free-space optical switch structure and its matrix analysis [J]. Acta Optica Sinica, 2004, 24(12): 1677~1682
 罗风光,曹明翠,谢 胡等. 4×4 自由空间光开关结构及其矩
- 阵分析 [J]. 光学学报, 2004, **24**(12): 1677~1682
- 18 Y. Zha, D. Sun, T. Liu. Rearrangeable nonblocking 8 × 8 matrix optical switch based on silica waveguide and extendend banyan network [J]. *IEEE Photon. Technol. Lett.*, 2007, 19(6): 390~392

- 19 D. Sun, W. Deng, S. E et al.. Study for performance of thermooptic matrix switches with flexible switching units and banyan networks [J]. Opt. Eng., 2006, 45(1): 014602~014609
- 20 Li Yuan, Cao Mingcui, Chen Qingming. Study on a novel threedimensional (3D) optical switching network [J]. Journal of China Institute of Communications, 1998, 19(6): 56~60 李 源,曹明翠,陈清明. 一种新型的三维光学交换网络研究 [J]. 通信学报, 1998, 19(6): 56~60
- 21 Wang Binquan, Liu Liren, Wang Ning *et al.*. Implementation of optical addressed 2×2 photonic switch and 3-D stacked optical butterfly interconnection network [J]. *Acta Optica Sinica*, 1996, 16(12): 1757~1761
 王斌泉,刘立人,王 宁等. 光寻址 2×2 光学开关及 3-D 集成 光学蝶形互连网络的实现 [J]. 光学学报, 1996, 16(12): 1757~1761
- 22 Zhang Yimo. Tendency to utilization of optical interconnection in computer [J]. Laser & Optoelectronics Progress, 2007, 44(7): 16~26

张以谟. 计算机光互连技术的应用前景 [J]. 激光与光电子学进 展,2007,44(7):16~26

实验室推介及人才招聘

为满足广大光学专家和学生的交流和沟通的需求,帮助专家招收优秀的学生、招聘合适的研究人员,也给光学研究生提供更好的深造和就业机会,中国激光杂志社将在每次"光学前沿" 会议上现场推出"实验室推介及人才招聘"服务,该服务自"光学前沿——第三届全国信息光学 与光子器件学术会议"开始向所有参会代表免费提供。

参与推介的单位可以向中国激光杂志社提交 15 分钟 ppt 材料(视频资料)、实验室简介及 人员招收、招聘材料,中国激光杂志社将提供单独时段与场地供代表交流。有意求职或深造的 代表可将个人简历提交给中国激光杂志社,中国激光杂志社将把您的信息推荐给相关单位。

联系人:段家喜编辑

电 话: 02169918426

E-mail: duanjiaxi@siom.ac.cn

《中国激光》杂志社有限公司

2010-05-11